「つながるクルマ」が変えるモビリティの未来像
ニュース
» 2020年07月20日 06時00分 公開

センシング:カメラと低解像度LiDARで高精度な深度予測、開発コストは7割削減

英国のケンブリッジコンサルタンツは、カメラと低解像度のLiDAR(ライダー、Light Detection and Ranging)から物体までの距離を高精度に予測するセンサーフュージョン技術を開発したと発表した。

[齊藤由希,MONOist]

 英国のケンブリッジコンサルタンツは、カメラと低解像度のLiDAR(ライダー、Light Detection and Ranging)から物体までの距離を高精度に予測するセンサーフュージョン技術を開発したと発表した。高解像度なLiDARのデータがなくても深度予測ができる。車両の周囲の3次元点群データを低コストなセンサーでも作成しやすくなることから、自動運転システムのコスト低減につながるとしている。

画像左が高解像度なLiDARから取得した深度データ。画像右が開発技術による深度予測(クリックして拡大) 出典:ケンブリッジコンサルタンツのデモサイトを基に作成

 開発技術は、畳み込みニューラルネットワーク(CNN)や完全畳み込みニューラルネットワーク(FCN、Fully Convolutional Neural Network)、転移学習、深度予測パフォーマンスの最適化などを融合した新しいアーキテクチャだという。

 一般的な車載カメラと解像度が低い安価なLiDARのデータを基に、元々のセンサーデータよりも高い解像度で物体までの距離(深度)を予測する。また、推定した深度の確実さについても把握できるため、システムの説明可能性の向上が図れるとしている。

 従来のディープラーニング(深層学習)の開発作業においては、センサーデータの収集やラベル付けに長時間を要するが、ケンブリッジコンサルタンツの開発技術は3D CGを活用したバーチャルな学習環境でも高い性能を確保し、開発にかかるコストや時間を従来の手法から70%削減できるという。

低解像度なLiDARのデータと開発技術によって予測した深度(左)。カメラのデータとして使用した3D CG(右)(クリックして拡大) 出典:ケンブリッジコンサルタンツ

→その他の「センシング」関連ニュースはこちら

Copyright © ITmedia, Inc. All Rights Reserved.